synthesis of silica coated magnetic nanoparticles
Authors
abstract
in this research controlled coating of magnetite (fe3o4) nanoparticles with sio2 was investigated. the fe3o4 nanoparticles were synthesized via chemical co-precipitation and then coated by silica according to stober method. effects of tetra ethyl ortho silicate (teos) concentration and ethanol to teos on the coating thickness were investigated. x-ray powder diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and alternative gradient force magnetometry techniques were used to characterize the magnetic nanoparticles and their coating. the results showed that the fe3o4 particles are in the 6-20 nm size range. particles coating thickness increased when the teos concentration increased. magnetic results revealed that the coating can prevent magnetite nanoparticles from surface oxidation and enhancement of saturation magnetization. for magnetic particles with mean diameter of 15nm coating diameter was about 7nm and the saturation magnetization of such particles was about 30emu/g.
similar resources
Synthesis of Silica Coated Magnetic Nanoparticles
In this research controlled coating of magnetite (Fe3O4) nanoparticles with SiO2 was investigated. The Fe3O4 nanoparticles were synthesized via chemical co-precipitation and then coated by silica according to Stober method. Effects of tetra ethyl ortho silicate (TEOS) concentration and ethanol to TEOS on the coating thickness were inves...
full textAssessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.
The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear e...
full textAlkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes
Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...
full textAlkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes
Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...
full textHigh Performance Nanocomposite Cation Exchange Membrane: Effects of Functionalized Silica-Coated Magnetic Nanoparticles
Nanocomposite cation exchange membranes (CEMs) were prepared by adding various amounts of functionalized silica-coated magnetite nanoparticles to the sulfonated polyethersulfone (sPES) polymeric matrix. The particles were synthesized first by the co-precipitation method (M0). Different surface modifications were then carried out on them by grafting three functional groups of mercaptopropyl, pro...
full textSynthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment
The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of nanoscience and nanotechnologyPublisher: iranian nano society
ISSN 1735-7004
volume 11
issue 2 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023